【S022】 具自適或感測性能之先進工程構造系統 (Advanced engineering structures with adaptive or self-sensing abilities)

Friday, 19 November, 09:00 ~ 10:30, Conference Room ROOM 8
Organizer: Lyan-Ywan Lu, Tzu-Kang Lin
Chair: 盧煉元, 李姿瑩


09:00 ~ 09:15 (15')
0160  含變頻式摩擦單擺支承與抗拉拔裝置橋梁之水平雙向振動台實驗
姿瑩 李, 煉元 盧, 奕翔 陳 and 文孝 洪
傳統隔震支承延長主結構自然振動週期降低引致地震力,卻易於近斷層地震中導致共振之負面效果,本研究運用新開發之變頻式摩擦單擺支承(Variable-frequency Friction Pendulum System, VFPS)於橋梁結構系統,避開近斷層震波下之可能共振反應,同時降低橋面版位移,避免伸縮縫處發生嚴重碰撞與P-delta效應。過去研究已證實VFPS對於橋墩高度相同之規則性橋梁及橋墩高度不相同之不規則性橋梁,均可發揮變頻特性,於水平單向近域與遠域震波下皆可發揮良好隔震效果。此外,若地震力過大,可能發生滑動支承之摩擦子超出曲盤邊界,或是因垂直向地震力過大,造成支承上下盤發生分離情形,引致落橋的危險,為避免發生落橋,於含變頻式摩擦單擺支承之橋梁結構系統中加入抗拉拔裝置,以避免上下部結構分離。
本研究主要探討含VFPS與抗拉拔裝置橋梁於水平雙向地震力下之隔震效能,同時進行振動台實驗加以驗證。試驗前,先以動力分析程式進行數值模擬,再設計所有實驗構件之細部尺度,並瞭解抗拉拔裝置開始工作之地表加速度PGA值。經進行一系列振動台實驗,試驗結果顯示VFPS對於橋墩高度相同之規則性橋梁及橋墩高度不相同之不規則性橋梁,於水平雙向地震力下均可發揮變頻特性,降低地震所引致之慣性力。抗拉拔裝置於較大強度之近域震波下,確實可發揮抗拉拔作用,特別對於不等高橋墩橋梁,其效果更為顯著。此外,比較等高橋墩與不等高橋墩橋梁實驗結果發現,不等高橋墩橋梁發生水平制動裝置碰撞時,因短橋墩勁度較高,其上之支承位移大於長橋墩處支承位移,使得短橋墩處支承先發生碰撞,碰撞後易使長橋墩處的橋面板產生騰空現象,導致長橋墩處抗拉拔裝置開始啟動,實驗結果顯示短橋墩處之水平碰撞力較大,而長橋墩處之抗拉拔力則較大。本項發現可做為實務設計上之設計參考。

09:15 ~ 09:30 (15')
0006  Numerical Study on Smart SRI Integrated with Early Prediction of Peak Velocity
Ting Yu Hsu, Pei-Shan Dai and Shiang-Jung Wang
The effectiveness of sloped rolling-type seismic isolators (SRI) in seismically protecting critical equipment from malfunction and damage has already been extensively demonstrated. To prevent the isolation displacement response of SRI from reaching a threshold, usually, passively designing large and conservative damping force for SRI is required, which also leads to enlarged and even unacceptable transmitted acceleration responses accordingly. That is, minimizing acceleration or displacement responses is always a trade-off for seismic isolation. Previous studies indicated that through determining and adjusting the damping force applied to SRI based on the possible information provided by an earthquake early warning system and in a semi-active control manner, respectively, its acceleration and displacement responses can be controlled more satisfactorily. However, it holds on the premise that the parameters of input excitation needed for determining the damping force are predicted promptly and accurately. Among the discussed parameters, the peak velocity (PV) was most recommended. To further improve this, in this study, with the first few seconds after P-wave arrival, the prediction models of PV are developed by using the artificial neural network (ANN) approach. Based on the prediction of PV as well as the proposed control law, the required damping force for SRI can be determined only several seconds after P-wave arrival. The effects of uncertainties in prediction of PV on the control performance of SRI are numerically examined. In addition, the control performance of SRI whose damping forces are determined by using the predictions of PV at different times after P-wave arrival are also numerically examined. Through studies under a large number of different earthquake records together with the ground motions recorded in an independent damaging earthquake event, a combination of ANN models at different, suitable times after P-wave arrival is recommended to determine the damping force applied to SRI.

09:30 ~ 09:45 (15')
0274  慣質電磁式調諧質量阻尼器於扭轉耦合建築結構之減振效能
長菁 張, 其璋 林 and 哲夫 王
慣質電磁式調諧質量阻尼器(Electromagnetic Tuned Mass Damper with Inerter, EM-TMDI)係以旋轉馬達電磁阻尼系統取代傳統黏滯阻尼器,並於馬達後軸安裝飛輪以增加慣質。由於調諧質量阻尼器(Tuned Mass Dampers, TMD)之頻率與其質量與勁度有關,本研究即利用飛輪調整系統慣質,藉以改變TMD頻率,克服TMD之離頻問題。同時,透過調整電磁阻尼系統的電阻值,可輕易改變TMD的阻尼值,亦可將振動能量轉換為電能,為可變質量與阻尼且兼備減振與儲能雙功能之系統。本研究延續過去EM-TMDI之設計理論,發展多元具慣質電磁式調諧質量阻尼器系統,稱之EM-MTMDI,並探討應用於多自由度扭轉耦合建築結構之減振與儲能最佳設計及效能分析。研究顯示EM-MTMDI如同EM-TMDI,安裝飛輪後可有效降低EM-MTMDI頻率,且安裝更具彈性,對於應用於多自由度扭轉耦合建築結構具有減振效能。此外,在EM-MTMDI運行過程中,電磁阻尼能產生可觀之電量,可應用於安全警示及緊急照明。

09:45 ~ 10:00 (15')
0030  Analysis and Validation of Isolation Systems with Multi-functional Friction Damper
Chia-Shang Chang Chien and Shan-Ru Chen
Theoretical and experimental studies in recent years have shown that the sliding seismic isolation system has a very excellent seismic isolation effect for remote seismic waves. However, if the seismic isolation system is subjected to near-field seismic waves, its sliding displacement will also be rapidly enlarged as the peak surface acceleration increases, which may endanger the safety of the seismic isolation system and the superstructure. The reason is that the long-period impulse effect of the near-field seismic wave is caused by the long-period pulse effect. The period is exactly the interval of the isolation period of the general traditional high-rise buildings and seismic isolation structures, so resonance is easy to occur. In order to improve the problem of excessive sliding displacement of the seismic isolation system caused by near-field seismic waves, scholars have proposed adding viscous damping to the seismic isolation system or increasing the friction coefficient of the sliding isolation system, in an attempt to reduce the excessively large seismic waves caused by the near-field seismic wave. The amount of displacement. The research results show that the sliding displacement of the seismic isolation layer can indeed be slightly controlled, but the acceleration transmitted to the superstructure has increased significantly. Therefore, the existing practices will inevitably affect the isolation benefits of the seismic isolation system under the action of distant seismic waves, and sacrifice the acceleration of the superstructure to suppress the sliding displacement of the foundation, which also violates the original intention of the seismic isolation system. The Conical Friction Pendulum Isolator (CFPI) is a seismic isolation system, which can avoid resonance effects by extending the structural period. But research shows that will cause displacement of the foundation to be considerably enlarged in near-fault waves. Therefore, in order to improve the performance of the isolation system and suppress the displacement in near-fault waves. This study would perform shaking table tests on the isolated structure with Multi-functional Friction Damper (MFD) to verify the correctness of the numerical simulation method. According to the research results, the numerical simulation method can indeed effectively predict the response trend of the structure, but the acceleration will increase slightly as the displacement decreases.

10:00 ~ 10:15 (15')
0036  半主動電磁阻尼隔震系統之振動台試驗
錦隆 林 and 譯醇 黃
為改善傳統隔震系統於近斷層震波作用下隔震支承位移過大的問題,部分研究建議可於隔震層間加入適當之增補黏滯性阻尼(supplemental viscous damping),對抑制隔震基礎位移量具有良好之效果。但另一方面,適用於近斷層隔震之阻尼值,遠大於適用遠域震波者,致使隔震系統於遠域震波作用下,因高阻尼使隔震位移受到抑制,造成上部結構加速度之隔震效果大打折扣,實難兩全其美。此外,過去曾有學者發展半主動液流阻尼器(semi-active fluid damper),不過因為機構較為複雜,因此未能廣泛應用。因此,本研究旨在研發半主動電磁式隔震系統(semi-active electromagnetic seismic isolation system, SA-EMSIS),於隔震系統中加入半主動電磁式(electromagnetic , EM)阻尼器,使隔震系統之電磁阻尼為可控制之參數。本研究之SA-EMSIS具備以下特點:(1)隔震系統之電磁阻尼係數,可透過電阻可控模組(resistance controllable module),進行即時控制;(2)旋轉電磁式阻尼器具備無衝程限制之優點。本研究設計製作具雙電磁阻尼器之隔震系統,SA-EMSIS具有兩個電磁式阻尼器,其中一個為被動EM阻尼器(外接固定電阻值),目的在於提供隔震系統固定的阻尼比,使其在遠域震波下具備良好之隔震效果;另一個則為半主動EM阻尼器,配合電阻可控模組之半主動控制律,適時增加系統之電磁阻尼,期能同時滿足近、遠域之隔震需求。在現階段的研究中,旨在透過電阻可控模組與振動台試驗,驗證SA-EMSIS電磁阻尼之可控制性,未來將持續發展可同時滿足之近、遠域隔震需求之半主動控制律(control algorithm)。

10:15 ~ 10:30 (15')
0068  雙擺變曲率滑動隔震支承之振動台實驗驗證
煉元 盧, 瀚緯 黃 and 信良 賴
隔震技術是目前最有效的結構耐震技術之一,而滑動隔震支承因具有:隔震週期穩定、隔震系統抗扭性佳、挫屈穩定性高及垂直勁度高等優點,已廣泛應用於實際建物。惟近年研究成果顯示這些具有固定週期之傳統滑動隔震系統在含有速度脈衝特性之近域震波作用下,易因似共振現象造成隔震位移過大與減震效能不彰之缺點。因此一些學者針對滑動隔震支承進行改良,提出力學性能可變之單擺變曲率滑動隔震元件,使其隔震週期不為定值,以避免於近域震波中產生共振之行為。為進一步縮小隔震支承尺寸,以減少製造成本與安裝空間,本研究乃提出雙擺變曲率滑動隔震支承(Double Sliding Isolator with Various Curvature,簡稱DSIVC)之構想。相較於單擺變曲率滑動支承,DSIVC具有更大的設計多變性及可變的力學特性,且在相同的支承位移容量下,DSIVC雙擺支承可較單擺支承使用更經濟之尺寸進行設計。為加速DSIVC隔震技術之實務應用,本文乃提出以離散時間狀態方程式為基礎的DSIVC隔震結構分析理論及數值模擬方法,同時以振動台動力實驗加以驗證。
本文所稱之DSIVC隔震支承係由上、下兩個獨立且曲率不固定的滑動曲面及一個中間摩擦子所組成。DSIVC支承回復力特性在雙向運動時,上、下滑動曲盤在x向和y向上均處於串聯狀態,故其x向和y向位移分別為上、下曲盤之位移相加,而其上、下滑動面之水平總剪力則應相等。在建立數值模擬所用之運動方程式時,可將DSIVC隔震結構之雙向運動數學模型表示成圖1之形式。由該數學模型可知,摩擦子、上曲盤及上部結構分別具有x向與y向二個自由度,故共可推導出6個自由度的雙向運動方程式。為方便數值運算,可進一步將二階之運動方程式改寫成一階之狀態方程式,並透過外力線性內插改寫成離散時間狀態方程式,以便計算DSIVC隔震結構之歷時反應。在數值模擬中,本文採用剪力平衡法(shear-balance method)以估算非線性之支承雙向摩擦力。在剪力平衡法中,DSIVC雙擺支承共可能出現四種摩擦狀態,分別是:(1)上下曲盤皆處於黏著狀態、(2)上曲盤滑動但下曲盤黏著、(3)上曲盤黏著但下曲盤滑動、(4)上下曲盤皆處於滑動狀態。針對這四種摩擦狀態,剪力平衡法可計算各狀態下之摩擦力大小及其作用方向。
本文DSIVC隔震結構之振動台實驗係在國家地震中心(NCREE)南部實驗室進行,圖2為實驗之組立圖。如圖所示,實驗中之上部結構試體為一單自由度剛體結構,由一個鋼構底梁框架和混凝土質塊所組成。上構試體每個角隅各安置一組DSIVC雙擺支承。實驗所採用之雙擺支承其上下兩個滑動曲面之高程函數係由八次方之多項式函數所定義,故又稱為雙擺多項式摩擦單擺支承(Double Polynomial Friction Pendulum Isolator,簡稱DPFPI)。DPFPI之回復力具有先軟化再硬化之特性,因此在強震作用下其硬化段具有抑制隔震位移之能力。再者,DPFPI支承之摩擦子採用油潤之乙烯龍摩擦片,此種材料之摩擦係數隨速度而變化,故可採用Constantinou(康氏)摩擦係數模型加以模擬。振動台實驗所輸入的震波形式分為水平單向和水平雙向震波二類。振動台實驗結果顯示,於單向震波作用下,支承位移、支承總剪力、遲滯迴圈之實測值與理論值均相當吻合。且在集集(TCU075)與Kobe(JMA)震波之遲滯迴圈中皆可看到DPFPI支承展現軟化再硬化之力學特性;而在簡諧波與GR-63-Core樓板震波作用下,因支承位移較小僅會出現軟化行為。而在雙向震波作用下,DPFPI隔震實驗之X與Y向支承位移、支承總剪力、遲滯迴圈其實測與理論值亦十分一致。同時,由於本案DPFPI採用摩擦係數較低之油潤摩擦子,可觀察到在Kobe與GR-63-Core震波作用下均有良好的減振效果;而在集集(TCU075)近域震波作用下,則因震波脈衝效應之影響,使得DPFPI支承位移增大因而進入支承之硬化段,亦使得上構之加速度增加。
本文研究結果顯示,本文推導DSIVC隔震結構於雙向震波作用下之運動方程式及數值分析方法,該分析方法可考慮摩擦力雙向耦合效應。本文振動台實驗則證實此分析方法可掌握DSIVC隔震結構在單向或雙向運動下之力學行為,同時,振動台實驗亦展現DSIVC之支承力學性能確實可隨支承位移變化之特性。由此證實DSIVC隔震支承為確實可行的隔震技術,亦驗證本文理論與分析方法之正確性。